
Sci.Int.(Lahore),28(6),5119-5123,2016 ISSN: 1013-5316; CODEN: SINTE 8 5119

November-December

 COMPARISON OF AGILE PROCESS MODELS TO CONCLUDE THE
EFFECTIVENESS FOR INDUSTRIAL SOFTWARE PROJECTS

M. Rizwan Jameel Qureshi, Fuad Bajaber
Faculty of Computing and Information Technology, King Abdulaziz University,

Jeddah, Kingdom of Saudi Arabia

rmuhammd@kau.edu.sa, fbajaber@kau.edu.sa

Cell # (+966-536474921)

ABSTRACT: The aim of agile principles is to develop small size software projects. There is no assistance how to tailor agile

methodologies for the development of medium size and complicated software. There are several agile models proposed in the

history of software engineering such as XP, Feature Driven Development (FDD), Adaptive Software Development (ASD) and

Dynamic System Development Model (DSDM). It is extremely hard choice for a software company to select a suitable agile

methodology to tailor it for in house development. There are several case studies reported about the experiences of agile

software development by several researchers. There is still requirement to study and compare agile software development

process models. The same is accomplished in this research by comparing agile models with their pros and cons. Further, XP

and Scrum are compared by conducting two controlled case studies due to their widespread usage to estimate quality that

which of the model is better than the other. Scrum is found to be more effective than XP by showing high quality.

Key words: SDLC, Process Models, Agile Principles, Quality Attributes

1. INTRODUCTION
Software engineering is a paradigm that is composed of

methodologies, techniques and tools [1,2]. Methodologies

are mainly divided into structured and object oriented.

Object oriented is widely practiced in software companies

from last several years due to its profound benefits over

structured methodologies like reusability, time saving and

less cost [3,4]. The most widely practiced object oriented

methodologies are Rational Unified Process (RUP) and

Agile. Agile methodologies are selected for this paper due to

its popularity and active area of research [5,6]. Several

controlled and industrial case studies are reported in the

literature about the successful implementations of agile

methodologies [2,6].

Agile methodologies focus mainly on agility to develop

software timely and within budget. Agility is defined as to

adapt changes during software development as per the needs

to achieve success without compromising quality. Agile

alliance defined twelve golden principles in 2001 to achieve

successful software development [2,7].

 Customer satisfaction by providing increments at

continues intervals of software development.

 Deliver the first increment within two to three weeks

and complete software within two to three months.

 Continues interaction of customer and agile throughout

software development.

 Physical meetings between team and customer.

 Customer has the privilege to provide new requirements

and even change requirements at any stage of system

development.

 Faith and regard among agile team.

 Measure the pace of the project at consistent intervals

during the software development.

 Good design always results into high quality.

 Self-disciplined persons always produce high quality

architecture and design.

 Adaptation of team and process is required as per the

conditions of software development.

 Agile team must follows keep it simple (KIS) principle

to design and develop software.

 Dedicated team must be allocated to develop agile

software.

Twelve golden principles proposed by the agile alliance are

difficult to meet in the current global software development

environment following agile methodologies. Agile

methodologies do not support distributed development

teams, subcontracting, reusable component based

development (CBD), sizeable development teams, safety

critical projects, development of large and complicated

software [8,9] and strong documentation [10,11].
The remainder of this paper is organized as follows: Section
2 illustrates the related work. Section 3 covers the
comparison of popular agile models. Section 4 provides the
validation using two controlled case studies. Section 5
illustrates the discussion to conclude the results.
2. RELATED WORK
Several case studies are documented to support the agile
software development from last several years [6][12-14].
The case studies are conducted to complete projects between
two to three months. Both qualitative and quantitative
techniques are used to provide results. The results show that
there must be a process to check the performance of team
and procedures of software development to increase
efficiency of both. It is also reported that agile practices
decrease defect rate and increase productivity of software
development. There is no evidence in any of the case studies
that how to tailor agile methodologies for average and
complex software projects.
Another case study is reported to increase awareness of
software developers about agile methodologies [15]. It is a
Ph.D. dissertation and does not provide experimental results
to manage the problems of software industry.
The most popular agile methodologies are XP, Adaptive
Software Development (ASD), Dynamic System
Development Method (DSDM), Change-Oriented Life Cycle
and Feature Driven Development (FDD) [16]. FDD

5120 ISSN: 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),28(6),5119-5123,2016

November-December

Table 1-The Comparison of Agile Methodologies

Main Agile

Methodologies

Main Limitations

XP [18-21] Main limitations of XP are poor

documentation. It is also

inappropriate for distributed teams,

reuse and subcontracting and

development of average and

complex software. The success of

XP mainly depends on the support of

its stakeholders.

Scrum [22-24] Scrum is mainly a management

framework than a methodology. It

doesn’t support for the development

of large software and sizeable teams.

Scrum also does not assist that how

to complete an iteration in one

month.

DSDM [2][25]

DSDM does not handle the

engineering of average and complex

projects. There is no support for the

management of sizeable teams.

There is a provision to compose

DSDM with XP methodology but at

the expense to manage limitations of

XP that are infused into DSDM.

Crystal Family

[26]

Geographically distributed teams are

not supported by Crystal family of

models. More work is needed to

measure usefulness of Crystal family

of methodologies for the engineering

of all types of projects.

FDD [27] FDD is the most recently proposed

methodology as compared to other

agile methodologies. More

validation is required to be widely

practiced in software industry.

methodology is supported by reporting a case study of
fifteen months project. The core objective of the case study
is to show the role of agile team on a successful software
project. The case study further reports how to decrease the
pressure and danger of agile methodologies on agile teams
and projects. It is also discussed that it is hard to manage
large projects with sizeable teams using agile
methodologies. It is also recommended that maximum team
size is nine persons following agile methodologies. The case
study does not report enough information that how FDD
methodology is implemented over 15 months project to
achieve success [16].
It is reported that transition, from traditional to agile
methodologies, has a strong impact to entire software
company groups including developers, managers and admin
[17]. Following are the results of case study [17].
 Agile projects may fail in the presence of such team

members who are too anxious or against to implement
rapid changes.

 Agile projects are also in danger if managers do not
communicate with their teams on daily basis to fix their
problems.

 Agile project also fails if transition from traditional to
agile methodology is not steady.

 Agile teams may fail in case of switching from
collocated teams to distributed teams without training.

 The skills of a successful team are expertise, analytical,
management, teamwork, goal centric, faith, regard and
self-discipline.

 It is necessary to organize agile team in such a way that
programmers and testers are sitting together to improve
agility and fix the bugs immediately as reported.

 It is required to consider as a condition using agile
methodologies that top management of software
company does not commit unrealistic deadlines to a
customer without taking confidence to its teams to
achieve success.

The results are just guidelines based on the experiences of
selected case studies and these are tested in other settings to
generalize the results [17]. Changes are accepted throughout
the software development using agile methodologies. There
is always uncertainty for agile or non agile project that it will
be successful or not. The uncertainty even further increase if
team is using agile methodology first time. The chances of
success highly depend on the fact that how much team
adapts to changes facing during the agile project.
Main limitations of XP are poor documentation. It is also
inappropriate for distributed teams, reuse and subcontracting
and development of average and complex software. The
success of XP mainly depends on the support of its
stakeholders [18-21]. Scrum is mainly a management
framework than a methodology. It doesn’t support for the
development of large software and sizeable teams. Scrum
also does not assist that how to complete an iteration in one
month [22-24].
DSDM does not handle the engineering of average and
complex projects. There is no support for the management of
sizeable teams. There is a provision to compose DSDM with
XP methodology, but at the expense to manage limitations
of XP that are infused into DSDM [2,25]. Geographically
distributed teams are not supported by Crystal family of
models. More work is needed to measure usefulness of
Crystal family of methodologies for the engineering of all
types of projects [26]. FDD is the most recently proposed
methodology as compared to other agile methodologies.
More validation is required to be widely practiced in
software industry [27].
A customized XP methodology is proposed to implement a
problem-solving information system [28]. It is an integrated
methodology that is a combination of XP and tailored
Waterfall methodologies. The aim to propose the customized
methodology to develop knowledge based systems following
agile principles and practices to decrease time and cost of
development. It is too early to predict the effectiveness of
customized XP methodology because the problem-solving
system is under construction.
Two case studies are presented using adapted XP model [29-
31]. A case study is performed in IBM for twelve months
time. Second case study is performed in Sabre Airline
Solutions for ninety days. The adapted XP model is named
as extreme programming evaluation framework (XP-EF). A
feedback loop is introduced in XP-EF to estimate the
performance of agile team and practices. More work is
required that XP-EF meets the XP adherence metrics. Both
case studies cannot be used as a standard to apply XP-EF in
other settings because of following reasons.
 The teams in both case studies were well experienced to

apply agile methodologies.

Sci.Int.(Lahore),28(6),5119-5123,2016 ISSN: 1013-5316; CODEN: SINTE 8 5121

November-December

 There was complete management assistance to conduct
both case studies [29-31].

3. COMPARISON OF AGILE METHODOLOGIES
Plan, Design, Code and Test are four phases of XP
methodology [2]. It is suggested using the core principles
and lessons learned from its ancestor methodologies [18].
Following are the two main concepts derived from the
previous methodologies.

 A project is always planned based on the user stories
those are depending on the uses cases like the Rational
Unified Process (RUP) [2,18].

 XP is incremental like its ancestor evolutionary
methodologies [2,18].

The main advantages of XP methodology are timely
delivery, economical, refactoring and appropriateness for the
development of small size software using small size teams
[2,18]. Improve the architecture and program using
Refactoring method throughout the SDLC. The main
limitation of XP methodology is inappropriate for the
development of average and complex software due to poor
documentation. It does not support to reuse due to fast
delivery cycle. Global software development and
subcontracting are also not supported using XP [8]. XP has
good engineering practices, but lacks in management
practices. The successful XP stories show that it requires full
assistance from its stakeholders [8,18].
The term ‘Scrum’ is used in Rugby game [2]. The Scrum
methodology is suggested in the early nineteen nineties [2].
Scrum is more like a framework than a methodology. It is
strong in management practices. Product backlog, sprint
backlog, effort estimation, sprint meetings, daily meetings
and burndown chart are the main activities of Scrum [2].
Scrum master, Product owner and Scrum teams are the main
roles using Scrum. Scrum supports to implement small scale
using five to seven team members [23]. The main limitation
of Scrum is inappropriate for the development of average
and complex software projects [22]. Scrum does not support
to large size teams. There is no recommendation that how to
apply Scrum to complete a sprint using 30 days release cycle
[32].
DSDM methodology is introduced in nineteen ninety four
[25]. DSDM is similar to Scrum with respect to team size. It
works with small teams. DSDM has shown its effectiveness
to develop business applications. DSDM is ineffective to
develop scientific or engineering applications [25]. It is
highly effective to develop small size projects. DSDM is
inappropriate for the development of average and complex
projects. The principles and practices of DSDM are
monitored, controlled and improved by a consortium [32].
DSDM has the privilege to enrich its benefits by composing
with other agile methodologies like XP. The limitations of
XP are also inherited into DSDM [2].
Highsmith and Cockburn proposed Crystal methodologies
[21]. Crystal methodologies are grouped into three types,
i.e., Clear, Orange and Orange Web [26]. Business
applications, with less than 6 team members, are developed
using Crystal Clear. Engineering and scientific applications
are developed using Crystal Orange. The recommended
team size is 10 to 40 members to use Crystal Orange
methodology [26]. There is no application/case study

reported using Crystal Orange Web in the current literature
[26]. It is proposed to develop

Table 2-The Data of Two Controlled Case Studies

Items XP Scrum

Type of Information System Library Payroll

Team size 6 6

Calendar Time (weeks) 5 5

Releases 4 4

Total Tasks defined 96 82

Total work effort (h) 1260 1000

Team Productivity 41 46

Post release defects 20 16

Customer Satisfaction 82% 85%

parallel applications [26]. Crystal methodologies are
proposed with the intension to provide a selection to the
software companies that they can pick an appropriate
methodology as per the type of project [26]. The main
limitation of Crystal methodologies is that these
methodologies are still at the stages of not more than
proposals. Empirical validations are required to test Crystal
methodologies to conclude solid results (using qualitative
and quantitative techniques) before these methodologies can
be applied in industrial settings [32]. There is no support for
global software development using Crystal methodologies
because of recommended closed physical interaction among
team members [32].
Five procedures are proposed in FDD instead of SDLC
phase [27]. An empirical study is conducted in the nineteen
nineties by applying FDD on an enterprise planning system
[27]. The results recommend that FDD can also be applied to
maintain software [27]. FDD inherits the common
limitations those are found in other agile methodologies
[32]. More controlled case studies are required to test FDD
methodology to generalize the results before it can be
applied in software industry for the development of
commercial software. It is discussed in [32], there is no
notably work found about the successful implementations of
FDD in software industry.
A comparison of the main limitations of commonly
practiced agile methodologies is shown in Table 1. The
existing literature shows that XP and Scrum are the most
commonly used agile methodologies [2][18]. To show the
effectiveness of agile models, XP and Scrum are selected in
this research to conclude the results by conducting two
controlled case studies.
4. VALIDATION
Two controlled case studies are conducted, i.e., one for

Scrum model and second for the XP model. Both case

studies are conducted in the premises of COMSATS

Institute of Information Technology, Lahore, Pakistan. A

team of six members are selected to conduct both case

studies to generalize the results. The details of both case

studies are provided in the sub sections 4.1 and 4.2. Table 2

shows the results of XP and Scrum case studies.

4.1 Scrum Case Study

5122 ISSN: 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),28(6),5119-5123,2016

November-December

The basic purpose of conducting the case study is to build a

system following the Scrum methodology. The duration of

case study was five weeks. The case study is used to develop

a financial system. The principles and practices of Scrum

methodology are followed to complete the first four

iterations of financial system to infer the results. The team

has already completed the term projects during Software

Engineering I and II courses, but it is the first experience of

team to implement the Scrum. Therefore, a training program

is arranged at the start of case study to literate the team

about the principles and practices of Scrum. The practices

covered during training are sprint zero, product backlog,

sprint backlog, sprint planning meeting, daily scrum

meeting, sprint review meeting, and sprint retrospective. The

Scrum team is composed of six members i.e., Scrum master,

3 designers/developers and 2 testers. Scrum master is

responsible to handle team. Scrum master acts the role of

product owner as well. Rational Rose, Net Beans, My SQL,

J-Unit, and Ireport tools are applied during the case study.

4.2 XP Case Study
The length of XP case study is five weeks. The case study is

used to develop an online Library Management System

(LMS). The results are accomplished using the first four

iterations of LMS. A training program is organized for the

team to get familiar with XP principles and practices. The

team already has the experience to implement agile

development using Scrum case study in terms of procedures,

roles and artifacts. The main practices covered during

training are keep it simple (design, code and

documentation), worked in pairs, automated testing,

integrate immediately after completion, code following

standards and on-site customer.

5. DISCUSSION OF THE RESULTS
Table 2 shows that a team of six members is selected to

develop Payroll and Library systems of an educational

institute using Scrum and XP subsequently. The results are

concluded on the first four iterations of two case studies. The

results are shown on the average of first four iterations.

Calendar time is five weeks for the accomplishment of four

releases. The results show that ninety six tasks are allocated

using the XP as compared to eighty two tasks using the

Scrum. XP consumed twelve sixty hours whereas Scrum

utilized one thousand hours work effort. Productivity is

calculated using user stories per person month in both case

studies. XP shows low productivity as compared to Scrum

i.e., 41 vs. 46. XP shows twenty post release defects as

compared to sixteen using the Scrum. Scrum shows high

customer satisfaction as compared to XP i.e., 85% vs. 82%. A

survey is conducted from the customer after each release to

calculate satisfaction.

The results indicate that Scrum has high quality as compared

to XP due to it’s a better management practices. XP

completes more number of tasks in the same calendar time

but at the expense of high work effort using the same team

size. Thus Scrum is a better model than XP inferring from the

results of two case studies.

6. CONCLUSION

There are several agile models proposed from last several

years. It is a difficult choice for a software company to select

a suitable model following agile principles. The aim of this

research is to compare agile model with their pros and cons to

facilitate project managers. XP and Scrum are the most

widely practiced agile models. Two controlled case studies

are conducted, i.e., one for XP and second for Scrum. The

objective is to compare the strengths and weaknesses of XP

and Scrum. Scrum shows significant performance over XP by

showing lesser number of defects and more customer

satisfaction.

REFERENCES
[1] Sebastian, T. (2004). The Many Dimensions of the

Software Process. Crossroads ACM Press, Vol. 6(4),
22-26.

[2] Pressman, R. S. (2011). Software Engineering. New
York, McGraw Hill.

[3] Bruynooghe, R. F. Greenwood, R.M. Robertson, I. Sa,
J. Snowdon, R.A. and Warboys, B.C. (1994). PADM:
Towards a Total Process Modelling System. Software
Process Modelling and Technology, Research Studies
Press, 293-334.

[4] Greenwood, M. Warboys, B.C. and Sa, J. (1996).
Cooperating evolving components: a rigorous approach
to evolving large software systems. Proc. 18th Int.
Conf. Software Engineering, Berlin, Germany, 428-
437.

[5] Schmietendorf, A. Dimitrov, E. and Dumke, R. R.
(2002). Process Models for the software development
and performance engineering tasks, Proc. 3rd Int.
workshop on Software and performance, Rome, Italy,
211-218.

[6] Outi, S. and Pekka, A. (2004). Empirical Evaluation of
Agile Software Development: The Controlled Case
Study Approach. Proc. 5th Int. Conf. Product Focused
Software Process Improvement, 408-423.

[7] Agile Alliance (2001).
http://agilemanifesto.org/principles.html, Visited July
23, 2016.

[8] Turk, D. France, R. and Rumpe, B. (2002). Limitations
of Agile Software Processes. Proc. 3rd Int. Conf.
eXtreme Programming and Agile Processes in
Software.

[9] Highsmith, J. and Cockburn, A. (2001). Agile Software
Development: The People Factor. Computer, Vol.
34(11), 131-133.

[10] McCarey, F. (2005). Agile software reuse
recommender. Proc. 27th Int. Conf. Software
engineering, St. Louis, MO, USA, 652-652.

[11] VIT publications (2002).
http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf,
Visited July 23, 2016.

[12] Outi, S. (2004). Improving Software Process in Agile
Software Development Projects: Results from Two XP
Case Studies. Proc. 30th EUROMICRO Conference,
France, 310-317.

[13] Outi, S. Kari, K. Pekka, K. Jani, L. Sanna, S., and
Pekka, A. (2004). Self-Adaptability of Agile Software
Processes: A Case Study on Post-iteration Workshops.
Proc. 5th Int. Conf. Extreme Programming and Agile

Sci.Int.(Lahore),28(6),5119-5123,2016 ISSN: 1013-5316; CODEN: SINTE 8 5123

November-December

Processes in Software Engineering, Germany, 184-193.
[14] Outi, S. Minna, P. Jari, S. (2005). Deploying Agile

Practices in Organizations: A Case Study. Proc.
European Conference on Software Process
Improvement (EuroSPI 2005), Hungry, 16-27.

[15] Cao, L. (2004). Modeling Dynamics of Agile Software
Development. Companion to the 19th annual ACM
SIGPLAN conference on Object-oriented
programming systems, languages, and applications,
Vancouver, BC, CANADA, pp. 46-47.

[16] Highsmith, J. and Cockburn, A. (2001). Agile Software
Development: The Business of Innovation. Computer
34(9), 120-122.

[17] Cohan, M. and Ford, D. (2003). Introducing an Agile
Process to an Organization. Computer, Vol. 36(6), 74-
78.

[18] Beck, K. (1999). Embracing Change with Extreme
Programming. IEEE Computer, Vol. 32(10), 70-77.

[19] Beck, K. (2000). Extreme Programming Explained:
Embrace Change. USA, Addison Wesley.

[20] Beck, K. (2003). Test-Driven Development By
Example. USA, Addison Wesley.

[21] Beck, K. and Andres, C. (2004). Extreme
Programming Explained: Embrace Change. Boston,
Addison Wesley.

[22] Schwaber, K. (1995). Scrum Development Process.
Proc. Of the OOPSLA’95 Workshop on Business
Object Design and Implementation. Springer-Verlag,
117-134.

[23] Schwaber, K. and Beedle, M. (2002). Agile Software
Development with Scrum. USA, Prentice Hall.

[24] Schwaber, K. (2004). Agile Project Management with
Scrum. USA, Microsoft Press.

[25] Stapleton, J. and Peter, C. (1997). DSDM Dynamic
Systems Development Method: The Method in
Practice, USA, Addison Wesley.

[26] Cockburn, A. (2005). Crystal Clear: A Human-
Powered Methodology for Small Teams. USA,
Addison Wesley.

[27] Palmer, S. R. and Felsing, J. M. (2002). A Practical
Guide to Feature-Driven Development. USA, Prentice
Hall.

[28] Baumeister, J., B. Puppe , F. and Dietmar, S. (2004).
An Agile Process for Developing Diagnostic
Knowledge Systems. KI Journal, Vol. 18(3), 12-16.

[29] Williams, L., Kerbs, W., Layman, Anton, A. and
Abrahamsson, P. (2004). Toward a Framework for
Evaluating Extreme Programming. Proc. 8th Int. Conf.
Empirical Assessment in Software Engineering,
Edinburgh, Scotland, 11-20.

[30] Layman, L., Williams, L. and Cunningham, L. (2004).
Exploring Extreme Programming in Context: An
Industrial Case Study. Proc. 2nd Agile Development
Conf., Salt Lake City, UT, 32-41.

[31] Layman, L., Williams, L. and Cunningham, L. (2006).
Motivations and Measurements in an Agile Case
Study. Journal of Systems Architecture, Vol. 52(11),
654-667.

[32] Abrahamsson, P. Juhani, W. Mikko, T. S. and Jussi, R.
(2003). New Directions on Agile Methods: A
Comparative Analysis. Proc. 25th Int. Conf. Software
Engineering, Portland, Oregon, 244-254.

